METODY MONTE CARLO W BADANIACH PRZEMIAN STRUKTURALNYCH W ZWIĄZKACH MIĘDZYMETALICZNYCH

Rafał Kozubski

Zakład Inżynierii Nowych Materiałów, Instytut Fizyki UJ

METODY SYMULACJI KOMPUTEROWYCH

• MONTE CARLO

Dynamika Molekularna

Metoda "Phase Field"

METODY MONTE CARLO

Klasa algorytmów symulujących zachowanie układów fizycznych na zasadzie numerycznej realizacji procesów stochastycznych (przebiegających losowo).

Taka realizacja stała się możliwa dzięki:

rozwojowi technologii obliczeniowej (komputery)wynalezieniu tzw. generatorów liczb losowych

STOCHASTYKA A RZECZYWISTOŚĆ

Atomistyczna struktura materii: 10²³ atomów (cząsteczek) w makroskopowym obiekcie,
 Chaotyczny ruch atomów (cząsteczek) w T > 0 K

Ludwig Boltzmann (1844-1906):

Obserwowalne własności ciał makroskopowych (makrostany opisane przez parametry, tzw. obserwable) wynikają z uśrednienia po możliwych mikrostanach odpowiadających konkretnym stanom wszystkich atomów (cząsteczek)

W stanie równowagi termodynamicznej poszczególne mikrostany "i" układu pojawiają się z prawdopodobieństwem:

$$p_{i} = \frac{\exp\left[-\frac{E_{i}}{k_{B}T}\right]}{\sum_{i} \exp\left[-\frac{E_{i}}{k_{B}T}\right]}$$

 E_i energia mikrostanu "i" k_B – stała Boltzmanna T- temperatura

WARTOŚĆ OBSERWABLIA:

$$\langle A \rangle = \sum_{i} A_{i} \times p_{i} = \sum_{i} \frac{A_{i} \times \exp\left[-\frac{E_{i}}{k_{B}T}\right]}{\sum_{i} \exp\left[-\frac{E_{i}}{k_{B}T}\right]}$$

Sumowanie przebiega po wszystkich możliwych mikrostanach – może być ich bardzo, a nawet nieskończenie wiele

Generator liczb losowych umożliwia wylosowanie skończonej liczby N mikrostanów (próbkowanie – *sampling*) i przybliżone obliczenie <A>:

$$\langle A \rangle \approx \sum_{i=1}^{N} \frac{A_i \times \exp\left[-\frac{E_i}{k_B T}\right]}{\sum_{i=1}^{N} \exp\left[-\frac{E_i}{k_B T}\right]}$$

Jeśli mikrostany losowane są z prawdopodobieństwem *p*_i (próbkowanie ważone – *importance sampling*) to:

$$\langle A \rangle \approx \frac{1}{N} \sum_{i=1}^{N} A_i$$

Problem:

Jak zrealizować próbkowanie ważone ?

METODA:

Symulacja łańcucha przejść układu pomiędzy mikrostanami σ_i :

$$\left\{ \sigma_{k} \xrightarrow{W_{k
ightarrow l}} \sigma_{l} \right\}$$

zachodzących z częstotliwościami $W_{k \rightarrow l}$ (łańcuch Markowa)

Jeśli: $\frac{W_{k \to l}}{W_{l \to k}} = \frac{p_l}{p_k}$ (tzw. warunek równowagi szczegółowej)

to łańcuch przejść prowadzi układ do stanu równowagi – po pewnym czasie mikrostany σ_i pojawiają się w łańcuchu z prawdopodobieństwem p_i

ZASADA NUMERYCZNEJ REALIZACJI PROCESÓW STOHASTYCZNYCH

- Założenie: zdarzenie X zachodzi w rzeczywistości z prawdopodobieństwem P
- Generator liczb losowych generuje liczbę $R \in \langle 0,1 \rangle$
- ✓ Zdarzenie realizowane jest w symulacji Monte Carlo jeśli R∈ (0,P)

TYPOWE ZAGADNIENIA ROZWIĄZYWALNE METODĄ MONTE CARLO:

Symulacja i charakterystyka właściwości układów w stanie równowagi:

Numeryczna realizacja łańcucha Markova przejść pomiędzy mikrostanami σ_i przy częstotliwościach $W(\sigma_i \rightarrow \sigma_j)$ spełniających warunek równowagi szczegółowej. Konieczne jest monitorowanie ewolucji wartości konkretnej obserwabli tak, by móc stwierdzić jej "wysycenie" oznaczające osiągnięcie stanu równowagi (w stanie "wysycenia" wartości obserwabli odpowiadające konkretnym mikrostanom σ_i pojawiają się z prawdopodobieństwem $P_{eq}(\sigma)$). Równowagowa wartość obserwabli wyznaczana jest poprzez próbkowanie ważone.

Przykład – wyznaczanie wartości energii swobodnej:

$$F = U - T \times S \qquad \longrightarrow \qquad U = \frac{1}{M} \sum_{i=1}^{M} E(\sigma_i)$$
$$S = -k_B \sum_i P(\sigma_i) \times \ln[P(\sigma_i)]$$

Symulacja procesów relaksacyjnych:

Sam łańcuch Markowa może być traktowany jako symulacja relaksacji układu do stanu równowagi. Średniowania dokonuje się po zespole niezależnie symulowanych łańcuchów Markowa.

Problemy:

✓ Powiązanie "czasu Monte Carlo" z czasem rzeczywistym,

 Wybór konkretnych formuł na częstotliwośći przejść – warunek równowagi szczegółowej nie wystarcza.

Inne możliwości: symulacja procesów nierównowagowych i zjawisk transportu – częstotliwości przejść nie muszą spełniać warunku równowagi szczegółowej

Numeryczna implementacja metody Monte Carlo

Określenie częstotliwości przejść W($\sigma_i \rightarrow \sigma_j$): Jedyne wymaganie: spełnienie warunku równowagi szczegółowej

Metropolis, N., Rosenbluth, A.W., Rosenbluth, N.N., Teller, A.H., and Teller, E. (1953), *J.Chem.Phys.* 21, 1087

$$W(\sigma_i \to \sigma_j) = \begin{cases} \tau^{-} \exp \left[-\frac{\Delta E}{k_B T} \right] & \Delta E \diamond \\ \\ \tau^{-} & \Delta E < \end{cases} \qquad \text{min} \quad \left\{ \tau^{-} & \tau^{-} \exp \left[-\frac{\Delta E}{k_B T} \right] \right\}$$

Glauber, R.J., (1963), J.Math.Phys. 4, 294

$$W(\sigma_{i} \to \sigma_{j}) = (\tau)^{-1} \times \frac{\exp\left[-\frac{E(\sigma_{j})}{k_{B}T}\right]}{\exp\left[-\frac{E(\sigma_{i})}{k_{B}T}\right] + \exp\left[-\frac{E(\sigma_{j})}{k_{B}T}\right]} = (\tau)^{-1} \times \frac{\exp\left[-\frac{\Delta E}{k_{B}T}\right]}{1 + \exp\left[-\frac{\Delta E}{k_{B}T}\right]}$$
$$\Delta E = E(\sigma_{j}) - E(\sigma_{j})$$

ALGORYTM "KLASYCZNY"

- 1. Generacja układu w mikrostanie σ_{l}
- 2. Losowy wybór mikrostanu $\sigma_i \neq \sigma_i$
- 3. Realizacja przejścia $\sigma_i \rightarrow \sigma_j$ z prawdopodobieństwem $\tau \times W(\sigma_i \rightarrow \sigma_j)$ (możliwy jest brak realizacji przejścia !)
- 4. Przesunięcie czasu o τ
- 5. Powrót do p. 2

WADA:

Duża liczba kroków MC jest tracona – przejścia nie są realizowane

ALGORYTM "CZASU REZYDENCJI":

1. Utworzenie "listy" wszystkich możliwych przejść $\sigma_i \rightarrow \sigma_j$ pomiędzy mikrostanami układu i obliczenie odpowiadających im częstotliwości wg Metropolisa

 $W_k = W(\sigma_i \rightarrow \sigma_j) = \tau^1 \times \exp\{-[E(\sigma_j) - E(\sigma_j)]/k_BT\}$

- 2. Wygenerowanie dwóch liczb losowych R_1 i R_2 z przedziału od 0 do 1
- 3. <u>Realizacja przejścia nr k, dla którego:</u>

$$\sum_{i=1}^{k-1} \frac{W_i}{\sum_j W_j} < R_1 \le \sum_{i=1}^k \frac{W_i}{\sum_j W_j}$$

4. Przesunięcie czasu o

$$\Delta t = -\frac{\ln R_2}{\sum_j W_j}$$

5. Powrót do p. 2

Problem of time scale

Interpretation of MC simulation results in terms of natural physical phenomena requires that the MC-time – i.e. the sequence of simulation steps, is related to real time. A solution of the problem depends on the particular algorithm applied

Metropolis-type algorithms:

- \square In each MC step a number N of *possible* transitions $\sigma_i \rightarrow \sigma_i$ has to be determined.
- \square Each MC step is associated with time increment $\Delta t = \tau / N$

"Residence-time" algorithm

Let the system be in the microstate σ_i at t = 0 and let P(t) be a probability that it still remains in this microstate at t > 0 (t is thus the residence time). If $\{W_i\}$ denote the frequencies of all possible transitions starting from σ_i the following differential equation holds:

$$\frac{d}{dt}P(t) = -\left(\sum_{i} W_{i}\right) \times P(t)$$

hence:

$$P(t) = C \times p \quad \left[-\left(\sum_{i} W_{i}\right) \times t \right] \quad \Leftarrow$$

probability distribution for residence times with the normalisation factor $C = \sum_i W_i$.

and
$$\langle t \rangle = \frac{1}{\sum_{i} W_{i}}$$

The above is realised numerically by putting:

$$t = -\frac{\underline{R}}{\sum_{j} W_{j}}$$

PRZYKŁADY ZASTOSOWANIA METODY MONTE CARLO W DZIEDZINIE PRZEMIAN STRUKTURALNYCH

PROCESY PORZĄDKOWANIA ATOMOWEGO

Przemiany fazowe "porządek-nieporządek"

Przemiana II rodzaju (ciągła)

Przemiana I rodzaju (nieciągła)

KINETYKA PORZĄDKOWANIA ATOMOWEGO

Przemiana "nieporządek-porządek"

Proces "porządek-porządek"

Atomowy mechanizm porządkowania

[9] P. Oramus, C. Massobrio, M. Kozłowski, R. Kozubski, V. Pierron-Bohnes, M. C. Cadeville, W. Pfeiler, *Ordering kinetics in Ni*₃Al by molecular dynamics, Comp. Mater. Sci. 27 (2003) 186-190

Energia układu

Konfiguracyjna energia układu w modelu Isinga:

$$E_{Conf} = \sum_{i,j,r} N_{ij}^{(r)} V_{ij}(r)$$

 $N_{ij}^{(r)}$ liczba par atomów 'i'-'k' w odległości
(strefie koordynacyjnej) r $V_{ij}(r)$ Zależna od odległości energia oddziaływania
między atomem 'j' i 'k'

Oddziaływania międzyatomowe

[10] T. Mohri, Y. Chen, *First-principles investigation of* $L1_0$ - *disordered phase equilibrium in Fe-Pt system*, Mater. Trans. 43, 2104 (2002)

"Embedded Atom Method" (EAM) Hamiltonian

M.S.Daw, M.I.Baskes, Phys.Rev.B 29, 6443, (1984).

The EAM system energy is given by:

$$E = \sum_{i} F_{i}(\rho_{i}) + \frac{1}{2} \sum_{i \neq j} \varphi_{ij}(r_{ij})$$

where $F_i(\rho_i)$ denotes so-called embedding energy depending on the electron density ρ_i in the system *without* an atom "*i*" at a position "*i*" and $\varphi_{ij}(r_{ij})$ is a short-range pair-potential describing the repulsion between cores of "*i*" and "*j*" atoms occupying the positions "*i*" and "*j*" and separated by a distance r_{ij} .

Parameters evaluated by fitting to experimental data – elaborated e.g. for Ni-Al.

MOLECULAR STATICS – a tool for **saddle-point energy** evaluation

Assumption:

Structural relaxation occurs substantially faster than atomic migration

Monte Carlo - mechanizm wakancyjny

Parametry symulacji

Próbki FePt L1₀:

- 256 000 atomów (40x40x40 komórek elementarnych)
- 1 wakancja wprowadzona na losowe miejsce
- Średniowanie po 8 do 128 próbkach
- W przypadku próbki litej periodyczne warunki brzegowe
- Powierzchnie symulowane poprzez przerwanie warunków brzegowych

WYNIK

Wstępne testy – przejście fazowe

SUPERSTRUCTURE STABILITY

L1₀

L1₂

STRUCTURE OF "ORDER-ORDER" RELAXATIONS

R.Kozubski, Prog.Mater.Sci. 41, 1, (1997).

MC simulations:

P. Oramus, R. Kozubski, V.Pierron-Bohnes, M.C.Cadeville, W.Pfeiler, *Phys.Rev.B* 63, 174109, (2001).

ORIGIN OF TWO TIME SCALES IN "ORDER-ORDER" KINETICS IN L1₂-ORDERED A₃B

P. Oramus, R. Kozubski, V.Pierron-Bohnes, M.C.Cadeville, W.Pfeiler, Phys. Rev. B 63, 174109, (2001).

Nano-warstwy

c || powierzchni

(cllx lub clly)

- $\mathbf{c} \perp \text{powierzchni}$ (cllz)
- Kształty próbek

- Dla każdego kształtu symulacje od 0 K do $T_f = 750$ K .. 1550 K
- Stała koncentracja wakancji

Reorientacja nadstruktury

Reorientacja - szczegóły

Energetyczna niestabilnośc

$$\Delta E_{uc} = 2V_{FePt} - V_{FeFe} - V_{PtPt} < 0$$

Zmiana energii przypadająca na komurkę elementarną przy powierzchni – niezależna od rodzaju atomów na powierzchni.

- FePt L1₀ komórka elementarna

Przyciąganie wakancji do powierzchni

Migracja wakancji w głąb próbki jest niekorzystna energetycznie – wnętrze próbki jest słabiej penetrowane, a relaksacje wolniejsze.

Reorientation – details

1200 K • - Fe

• - Pt

PROCESY ROZPADU, RÓWNOWAGI FAZOWE

MODEL: EQUILIBRIUM CONCENTRATION OF THERMAL VACANCIES

W. Schapink, Scr. Metall. 3, 113, (1969).
S. H. Lim, G. E. Murch, W. A. Oates, J. Phys. Chem. Solids 53, 181, (1992)
R. Kozubski, Acta Metall. Mater. 41, 2565, (1993).

Lattice gas:

A-atoms + B-atoms + vacancies $C_A/C_B = const,$ $2V_{AB}-V_{AA}-V_{BB} < 0$ (tendency for B2 ordering) $V_{VV} = 0$

SGCMC for B2 superstructure with vacancies and 1:1 stoichiometry

T = const, p = 0 $N_{tot} = N_A + N_B + N_V = const, \quad \frac{N_A}{N} = 1$ $N_v \rightarrow N_v + 2 = \begin{cases} A \rightarrow V \\ B \rightarrow V \end{cases}, \quad N_v \rightarrow N_v - 2 = \begin{cases} V \rightarrow A \\ V \rightarrow B \end{cases}$ Ising type Hamiltonian in a form: $H = \frac{1}{2} \sum_{i=1}^{n} N_{ij} V_{ij} + \sum_{i=1}^{n} N_{i} \mu_{i}, N_{ij} - number of pairs$ $U_{\rm conf} = \frac{1}{2} \sum_{i,j} N_{ij} V_{ij},$ $H = U_{conf} + \frac{N_{tot}(\mu_{A} + \mu_{B})}{2} + \frac{N_{V}(2\mu_{V} - \mu_{A} - \mu_{B})}{2}$ $\Delta \mu \equiv \frac{(2\mu_{\rm v} - \mu_{\rm A} - \mu_{\rm B})}{2}, \Delta U_{\rm conf} \equiv \Delta U = U(N_{\rm v} + 2) - U(N_{\rm v})$ $\begin{cases} P(N_{\rm V} \rightarrow N_{\rm V} + 2) = e^{-\beta[-\Delta U - \Delta \mu]} \\ P(N_{\rm V} + 2 \rightarrow N_{\rm V}) = e^{-\beta[\Delta U + \Delta \mu]} \end{cases}$

The $\Delta\mu$ parameter is scanned and two-phase coexistence region is localised

